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    ABSTRACT 

   Developments in the last century have led to a better understanding of diffusion, the perpetual mixing of 
molecules caused by thermal motion. In this chapter, the basic principles governing the diffusion phenomenon and 
its measurement using magnetic resonance (MR) are reviewed. The concepts of the apparent diffusion coefficient 
and of the diffusion propagator as well as their MR measurements are introduced from basic principles. Finally, 
the influence of neural tissue microstructure on the diffusion-weighted MR signal is briefly discussed. 
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                Introduction to Diffusion MR 
   Peter J.   Basser   and     Evren    Ö zarslan    

    I.     WHAT IS DIFFUSION? 

   Diffusion is a mass transport process arising in 
nature, which results in molecular or particle mixing 
without requiring bulk motion. Diffusion should not 
be confused with convection or dispersion –  other 
transport mechanisms that require bulk motion to 
carry particles from one place to another. 

 The excellent book by Howard  Berg (1983)   Random
Walks in Biology  describes a helpful Gedanken experi-
ment that illustrates the diffusion phenomenon. 

Imagine carefully introducing a drop of colored fluo-
rescent dye into a jar of water. Initially, the dye appears 
to remain concentrated at the point of release, but over 
time it spreads radially, in a spherically symmetric pro-
file. This mixing process takes place without stirring or 
other bulk fluid motion. The physical law that explains 
this phenomenon is called Fick’s first law (       Fick, 1855a, 
b ), which relates the diffusive flux to any concentration 
difference through the relationship 

J � �D C∇  (1.1)
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 where  J  is the net particle flux (vector),  C  is the parti-
cle concentration, and the constant of proportionality, 
D , is called the  “ diffusion coefficient ” . As illustrated 
in  Figure 1.1   , Fick’s first law embodies the notion that 
particles flow from regions of high concentration to 
low concentration (thus the minus sign in equation 
(1.1)) in an entirely analogous way that heat flows 
from regions of high temperature to low temperature, 
as described in the earlier Fourier’s law of heating on 
which Fick’s law was based. In the case of diffusion, 
the rate of the flux is proportional to the concentration 
gradient as well as to the diffusion coefficient. Unlike 
the flux vector or the concentration, the diffusion coef-
ficient is an intrinsic property of the medium, and its 
value is determined by the size of the diffusing mole-
cules and the temperature and microstructural features 
of the environment. The sensitivity of the diffusion 
coefficient on the local microstructure enables its use 
as a probe of physical properties of biological tissue. 

   On a molecular level diffusive mixing results solely 
from collisions between atoms or molecules in the 
liquid or gas state. Another interesting feature of dif-
fusion is that it occurs even in thermodynamic equilib-
rium, for example in a jar of water kept at a constant 
temperature and pressure. This is quite remarkable 
because the classical picture of diffusion, as expressed 
above in Fick’s first law, implies that when the tem-
perature or concentration gradients vanish, there is 
no net flux. There were many who held that diffu-
sive mixing or energy transfer stopped at this point. 
We now know that although the net flux vanishes, 
microscopic motions of molecule still persist; it is 
just that on average, there is no net molecular flux in 
equilibrium.

 A framework that explains this phenomenon has 
its origins in the observations of Robert Brown, who is 

credited with being the first one to report the random 
motions of pollen grains while studying them under 
his microscope ( Brown, 1828 ); his observation is illus-
trated in a cartoon in  Figure 1.2   . He reported that par-
ticles moved randomly without any apparent cause. 
Brown initially believed that there was some life force 
that was causing these motions, but disabused himself 
of this notion when he observed the same fluctuations 
when studying dust and other dead matter. 

   In the early part of the 20th century, Albert Einstein, 
who was unaware of Brown’s observation and seek-
ing evidence that would undoubtedly imply the exist-
ence of atoms, came to the conclusion that ( Einstein,
1905 ;  F ü rth and Cowper, 1956 )  “  … bodies of micro-
scopically visible size suspended in a liquid will per-
form movements of such magnitude that they can 
be easily observed in a microscope ” . Einstein used a 
probabilistic framework to describe the motion of an 
ensemble of particles undergoing diffusion, which 
led to a coherent description of diffusion, reconciling 
the Fickian and Brownian pictures. He introduced the 
 “ displacement distribution ”  for this purpose, which 
quantifies the fraction of particles that will traverse 
a certain distance within a particular timeframe, or 
equivalently, the likelihood that a single given particle 
will undergo that displacement. For example, in free 
diffusion the displacement distribution is a Gaussian 
function whose width is determined by the diffu-
sion coefficient as illustrated in  Figure 1.3   . Gaussian 
diffusion will be treated in more detail in Chapter 3, 

J

FIGURE 1.1  According to Fick’s first law, when the specimen 
contains different regions with different concentrations of mole-
cules, the particles will, on average, tend to move from high concen-
tration regions to low concentration regions leading to a net flux ( J ).

FIGURE 1.2      Robert Brown, a botanist working on the mecha-
nisms of fertilization in flowering plants, noticed the perpetual 
motion of pollen grains suspended in water in 1827.    
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whereas the more general case of non-Gaussianity 
will be tackled in Chapters 4 and 7. 

   Using the displacement distribution concept, 
Einstein was able to derive an explicit relation-
ship between the mean-squared displacement of the 
ensemble, characterizing its Brownian motion, and the 
classical diffusion coefficient,  D , appearing in Fick’s 
law (       Einstein, 1905, 1926 ), given by 

〈 〉x D2 2� Δ (1.2)

   where  �x2�  is the mean-squared displacement of parti-
cles during a diffusion time,  Δ , and  D  is the same clas-
sical diffusion coefficient appearing in Fick’s first law 
above.

 At around the same time as Einstein,  Smoluchowski 
(1906)  was able to reach the same conclusions using 
different means. Langevin improved upon Einstein’s 
description of diffusion for ultra-short timescales 
in which there are few molecular collisions, but we 
are not able to probe this regime using MR diffusion 
measurements in water. Since a particle experiences 
about 10 21  collisions every second in typical proton-
rich solvents like water ( Chandrasekhar, 1943 ), we 
generally do not concern ourselves with this correc-
tion in diffusion MR.  

    II.     MAGNETIC RESONANCE 
AND DIFFUSION 

   Magnetic resonance provides a unique opportunity 
to quantify the diffusional characteristics of a wide 
range of specimens. Because diffusional processes 
are influenced by the geometrical structure of the 

environment, MR can be used to probe the struc-
tural environment non-invasively. This is particularly 
important in studies that involve biological samples 
in which the characteristic length of the boundaries 
influencing diffusion are typically so small that they 
cannot be resolved by conventional magnetic reso-
nance imaging (MRI) techniques. 

 A typical nuclear magnetic resonance (NMR) scan 
starts with the excitation of the nuclei with a 90 degree 
radiofrequency (rf) pulse that tilts the magnetization 
vector into the plane whose normal is along the main 
magnetic field. The spins subsequently start to precess 
around the magnetic field  –  a phenomenon called 
Larmor precession. The angular frequency of this pre-
cession is given by 

ω γ� B  (1.3)

   where  B  is the magnetic field that the spin is exposed 
to and γ  is the gyromagnetic ratio  –  a constant specific 
to the nucleus under examination. In water, the hydro-
gen nucleus (i.e. the proton) has a gyromagnetic ratio 
value of approximately 2.68      �      10 8  rad/s/tesla. Spins 
that are initially coherent dephase due to factors such 
as magnetic field inhomogeneities and dipolar inter-
actions ( Abragam, 1961 ) leading to a decay of the volt-
age (signal) induced in the receiver. 

 As proposed by Edwin Hahn ( Hahn, 1950 ), and 
illustrated in  Figure 1.4   , the dephasing due to mag-
netic field inhomogeneities can be reversed through a 
subsequent application of a 180 degree rf pulse, and 
the signal is reproduced. In this  “ spin-echo ”  experi-
ment, the time between the first rf pulse and forma-
tion of the echo is called TE and it is twice the time 
between the two rf pulses, which is denoted by τ . The 
generated echo is detected by a receiver antenna (MR 
coil) and is used to produce spectra. Carefully devised 
sequences of rf pulses along with external magnetic 
field gradients linearly changing in space, enable the 
acquisition of magnetic resonance images. MR signal 
and image acquisition will be discussed in detail in 
Chapter 2. 
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FIGURE 1.3      The Gaussian displacement distribution plotted 
for various values of the diffusion coefficient when the diffusion 
time was taken to be 40       ms. Larger diffusion coefficients lead to 
broader displacement probabilities suggesting increased diffusional 
mobility.    
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FIGURE 1.4  A schematic of the spin-echo method introduced 
by Hahn.    
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   The sensitivity of the spin-echo MR signal on 
molecular diffusion was recognized by Hahn. He 
reported a reduction of signal of the spin echo and 
explained it in terms of the dephasing of spins caused 
by translational diffusion within an inhomogeneous 
magnetic field ( Hahn, 1950 ). While he proposed that 
one could measure the diffusion coefficient of a solu-
tion containing spin-labeled molecules, he did not 
propose a direct method for doing so. 

 A few years later,  Carr and Purcell (1954)  proposed 
a complete mathematical and physical framework for 
such a measurement using Hahn’s NMR spin-echo 
sequence. They realized that the echo magnitude 
could be sensitized solely to the effects of random 
molecular spreading caused by diffusion in a way 
that permits a direct measurement. The idea they 
employed is not very different from what is utilized in 
most current studies of diffusion-weighted imaging. 
Because a spin’s precession frequency is determined 
by the local magnetic field as implied by equation 
(1.3), if a  “ magnetic field gradient ”  is applied, spins 
that are at different locations experience different 
magnetic fields  –  hence they precess at different angu-
lar frequencies. After a certain time, the spins acquire 
different phase shifts depending on their location. 
Stronger gradients will lead to sharper phase changes
 across the specimen, yielding a higher sensitivity 
on diffusion. In most current clinical applications, a 
quantity called the  “  b -value ” , which is proportional to 
the square of the gradient strength, is used to charac-
terize the level of the induced sensitivity on diffusion. 

   In the scheme considered by Carr and Purcell, a 
constant magnetic field gradient is applied through-
out the entire Hahn spin-echo experiment as shown 
in  Figure 1.5   . Such an acquisition can be performed 
either in a spatially linear main field, or using another 
coil that is capable of creating a linear magnetic field 
on top of the homogeneous field of the scanner ( B0 ). 

In their description, at a particular time t , a particle 
situated at position x  experiences a magnetic field of 
B0       �       G x ( t ). If the particle is assumed to spend a short 
time, τ� , at this point before moving to another loca-
tion, it suffers a phase shift given by 

φ ω τ
γ τ

( ( )) ( ( ))
( ( ))

x t x t
B G x t

� � �
� � � �0  (1.4)

   as a result of the Larmor precession at the field modi-
fied by the constant gradient. Here, the minus sign 
is necessary for protons whose precession is in the 
clockwise direction on the plane perpendicular to the 
main magnetic field. Therefore, the net phase shift 
that influences the MR signal at t       �      2 τ  is related to 
the motional history of the particles in the ensemble. 
By exploiting this phenomenon Carr and Purcell pro-
posed MR sequences to sensitize the MR spin echo 
to the effects of diffusion, and developed a rigorous 
mathematical framework to measure the diffusion 
coefficient from such sequences. This elevated NMR 
as a  “ gold standard ”  for measuring molecular diffu-
sion. An alternative mathematical formulation of the 
problem was introduced by  Torrey (1956)  who gener-
alized the phenomenological Bloch equations ( Bloch,
1946 ) to include the effects of diffusion. 

 After about a decade,  Stejskal and Tanner (1965)  
introduced many innovations that made modern dif-
fusion measurements by NMR and MRI possible. 
First, they introduced the pulsed gradient spin-echo 
(PGSE) sequence, which replaced Carr and Purcell’s 
constant magnetic field with short duration gradi-
ent pulses as illustrated in Figure 1.6   . This allowed 
a clear distinction between the encoding time (pulse 
duration, δ ) and the diffusion time (separation of the 
two pulses, Δ ). A particularly interesting case of this 
pulse sequence that makes the problem considerably 
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FIGURE 1.6  A schematic of the pulsed field gradient spin-echo MR 
technique introduced by Stejskal and Tanner. The time between the 
application of the two gradient pulses, Δ , may be anywhere between 
10       ms and a few hundreds of milliseconds. The gradient pulse dura-
tion, δ , can vary between a few milliseconds to  Δ , where when  δ       �       Δ , 
the pulse sequence becomes the same as that in  Figure 1.5 . 
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FIGURE 1.5  A schematic of the spin-echo experiment in the 
presence of a constant field gradient discussed by Carr and Purcell. 
Diffusion taking place in the resulting inhomogeneous field gives 
rise to a decreased MR signal intensity.    
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simpler  –  from a theoretical point of view is obtained 
when the diffusion gradients are so short that dif-
fusion taking place during the application of these 
pulses can be neglected. In this “ narrow pulse ”  
regime, the net phase change induced by the first gra-
dient pulse is given simply by 

φ1 1� �q x (1.5)

   where  x1  is the position of the particle during the 
application of the first pulse and we ignore the phase 
change due to the B0  field, which is constant for all 
spins in the ensemble. In the above expression all 
experimental parameters were combined in the quan-
tity q       �       γδ G , where  δ  and  G  are the duration and 
the magnitude of the gradient pulses, respectively. 
Similarly, if the particle is situated at position  x2  dur-
ing the application of the second pulse, the net phase 
change due to the second pulse is given by 

φ2 2� �q x  (1.6)

 The 180 degree rf pulse applied in between the two 
gradient pulses reverses the phase change that occurs 
prior to it, i.e. that induced by the first gradient pulse. 
Therefore, the aggregate phase change that the particle 
suffers is given by 

φ φ2 1 2 1− � � �q x x( )  (1.7)

   Clearly, if particles remained stationary, i.e.  x1       �       x2 , 
the net phase shift would vanish. In this case, and in 
the case in which all spins are displaced by the same 
constant amount, the magnitude of the echo will be 
unchanged (except for the T1 and T2 decay that is 
occurring throughout the sequence). However, if par-
ticles diffuse randomly throughout the excited vol-
ume, the phase increment they gain during the first 
period does not generally cancel the phase decrement 
they accrue during the second period. This incomplete 
cancellation results in phase dispersion or a spreading 
of phases among the randomly moving population of 
spins. Therefore, the overall signal, given by the sum 
of the magnetic moments of all spins, is attenuated 
due to the incoherence in the orientations of individ-
ual magnetic moments. 

   It is more convenient to introduce a new quantity, 
E ( q ), called MR signal attenuation, than to deal with 
the MR signal itself. E ( q ) is obtained by dividing 
the diffusion-attenuated signal,  S ( q ), by the signal in 
the absence of any gradients, S0       �       S (0), i.e.  E ( q )      �       S ( q ) /
S0 . Since relaxation-related signal attenuation is 
approximately independent of the applied diffusion 
gradients, dividing S ( q ) by  S0  eliminates the effects 
of relaxation, and the  q -dependence of  E ( q ) can be 

attributed solely to diffusion. The MR signal attenua-
tion is then given by 

E q x P x x e x xiq x x( ) ( ) ( ) ( )� � �ρ 1 1 2 2 1
2 1∫ ∫ , ,  d dΔ  (1.8)

   where we employed two new quantities. The first of 
these, ρ ( x1 ), is the spin density at the time of appli-
cation of the first pulse quantifying the likelihood of 
finding a spin at location x1 . In most applications, this 
function can be taken to be a constant throughout the 
water-filled region, where the value of the constant 
is determined by setting the integral of ρ ( x1 ) equal to 
unity. The second function that we used,  P ( x1, x2,   Δ ), 
is the diffusion propagator (Green’s function) that 
denotes the likelihood that a particle initially located 
at position x1  will have ended up at  x2  after a time  Δ    – 
the separation of the two gradients. These two func-
tions are related through the expression 

lim ( , , ) ( )
t

P x x t x
→∞

1 2 1� ρ  (1.9)

   as when the diffusion time is very long, a spin can 
traverse to any location in space with the same prob-
ability. The remaining quantity in equation (1.8), 

e q x x i q x xiq x x� � � � � �( ) cos( ( )) sin( ( ))2 1
2 1 2 1  (1.10)

   where  i2       �       � 1, is the  “ Fourier kernel ”  that is used, e.g., 
in obtaining the frequency response of a time-dependent 
signal. Here, the real (cosine) and imaginary (sine) 
components of the Fourier kernel represent, respec-
tively, the  x  and  y  components of the two-dimensional 
magnetization vector on the plane perpendicular to 
the main magnetic field, and the integration repre-
sents the summation over all possible displacements 
in the ensemble. 

   If diffusion is free, the propagator is Gaussian 
and the MR signal attenuation is given by another 
Gaussian, E q e q D( ) � � 2 Δ. This expression is a special 
case of the more general Stejskal – Tanner relation, 
which takes the duration of the pulses into considera-
tion as well, given by 

E q e
e

q D

bD
( ) ( )�

�

� �

�

2 3Δ δ/

 (1.11)      

   where  b       �       q2 ( Δ       �       δ / 3)      �      ( γδ G ) 2 ( Δ       �       δ / 3) is the  b -value 
discussed above. 

 Stejskal employed the above formalism for the case 
of free, anisotropic diffusion in the principal frame of 
reference ( Stejskal, 1965 ), where he used a  “ tensor ” , i.e. 
a 3      �      3 matrix that represents the natural orientation of 
anisotropic diffusion with respect to the three axes of the 
laboratory reference frame, which is determined by the 
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orthogonal orientations of the magnetic field gradients 
produced by the three gradient coils. A general scheme, 
called diffusion tensor imaging (DTI), was developed 
to measure the entire diffusion tensor (both its diagonal 
and off-diagonal elements) in each voxel within the lab-
oratory frame of reference ( Basser  et al ., 1994 ). 

    A.     From the MR Signal Attenuation to the 
Average Propagator 

 To glean the microstructural features of the speci-
men from the MR signal intensity, one may fit mathe-
matical models to the acquired diffusion-weighted data. 
However, when the specimen’s microstructural features 
are not known  a priori , or when the specimen exhibits 
considerable regional variability like in most applica-
tions of biological and medical imaging, an alternative 
approach that does not assume any particular model may 
be advantageous. For example, in the above discussion 
we have not employed any particular model and it would 
be desirable to obtain the local propagator,  P ( x1, x2,   Δ ), 
employed in equation (1.8) from the MR signal. However, 
finite resolution of the images and the unavailability 
of the spin density function prohibit the inference of the 
local propagator directly from the MR signal. 

   The difficulty associated with obtaining the local 
propagator can be overcome to some extent by intro-
ducing a net displacement variable x       �       x2       �       x1  that 
makes it possible to write the simplified expression 

E q P x e xiqx( ) ( , )� �Δ∫ d  (1.12)

   where P x( , )Δ  is the ensemble average propagator 
given by 

P x x P x x x x( , ) ( ) ( , ,Δ Δ)� �ρ 1 1 1 1∫ d  (1.13)

   This procedure, initially proposed by  Stejskal 
(1965) , makes it possible to obtain an average propa-
gator from the  E ( q ) data by inverting the Fourier 
transform in equation (1.12). The propagator recon-
structed in this fashion can be envisioned to be a 
 “q -space image ”  of the displacements ( Callaghan  et al. , 
1990 ). If the diffusion-sensitizing pulses are embed-
ded into imaging protocols and the average propa-
gator is reconstructed at each voxel of the image, 
spatially localized displacement maps can be obtained 
( Callaghan  et al. , 1988 ); this approach laid the foun-
dation for developments of q -space NMR and MRI 
( Callaghan, 1991 ) or equivalently, diffusion spectrum 
imaging (DSI) ( Tuch  et al. , 2001 ;  Wedeen  et al. , 2005 ). 
The q -space imaging and DSI will be discussed in 
more detail in Chapters 4 and 7.   

    III.     DIFFUSION IN NEURAL TISSUE 

   The incessant random motion of water molecules 
within the tissue is influenced by a variety of factors 
such as restrictions due to cell membranes, cytoskel-
eton, and macromolecules ( Tanner and Stejskal, 1968 ). 
 Figure 1.7    depicts how the cells may hinder the oth-
erwise free motion of molecules. By employing the 
understanding of how microstructural features con-
tribute to the overall diffusional process, it may be 
possible to obtain valuable information about the bio-
logical microstructure simply by observing the motion 
of water molecules. This is particularly important in 
the understanding of neural tissue for its notoriously 
complicated structure. 

 Enhancing diffusive attenuation with the application 
of gradients, as we discussed for the case of spin ech-
oes above, introduces a contrast mechanism different 

FIGURE 1.7      Biological cells may hinder the Brownian motion of extracellular water molecules (left). Inside each cell, diffusion may be
envisioned to be restricted by the cellular membranes (right). 
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than that in relaxation-weighted magnetic resonance 
images. Such maps of the signal intensity S  are called 
diffusion-weighted images. Diffusion-weighted images 
have been utilized extensively in neuroimaging since it 
was shown that ischemic strokes can be detected much 
earlier with diffusion-weighted images when com-
pared to traditional T1 and T2 weighted magnetic res-
onance images ( Moseley  et al. , 1990b ). This discovery 
has made diffusion-weighted imaging an indispensa-
ble tool in the diagnosis and management of ischemic 
stroke. 

   The central nervous system (CNS) comprises neu-
ronal cells connected to each other through axons 
that function as transmission lines between differ-
ent regions. An understanding of how the brain and 
the spinal cord function is not possible without the 
knowledge of how different anatomical regions are 
connected to each other. Since water molecules tend 
to diffuse more freely along the direction of the fiber, 
if one can quantify the orientational preference of 
diffusion, it may be possible to relate it to the axonal 
orientations.

 In tissues, such as brain gray matter, where the 
measured apparent diffusivity is largely independ-
ent of the orientation of the tissue (i.e. isotropic) at the 
voxel length scale, it is usually sufficient to describe the 
diffusion characteristics with a single (scalar) apparent 
diffusion coefficient (ADC). However, in anisotropic 
media, such as white matter ( Henkelman  et al. , 1994 ; 
       Moseley  et al. , 1990a, 1991 ) or skeletal and cardiac mus-
cle ( Cleveland  et al. , 1976 ;  Garrido  et al. , 1994 ;  Tanner, 
1979 ), where the measured diffusivity is known to 
depend upon the orientation of the tissue, a single 
ADC does not adequately characterize the orienta-
tion-dependent water mobility. The next most complex 
model that describes anisotropic diffusion replaces the 
scalar ADC with a symmetric effective or apparent dif-
fusion tensor of water,  D  (e.g. see  Crank, 1975 ). 

   The causes or biophysical basis of diffusion ani-
sotropy in brain parenchyma and other tissues have 
not been fully elucidated, although most investiga-
tors ascribe it to ordered, heterogeneous structures, 
such as large oriented extracellular and intracellular 
macromolecules, supermacromolecular structures, 
organelles, and membranes. Clearly, in the central 
nervous system (CNS), diffusion anisotropy in white 
matter is not simply caused by myelin, since several 
studies have shown that even before myelin is depos-
ited, diffusion anisotropy can be measured using 
MRI ( Neil  et al. , 1998 ;        Beaulieu and Allen, 1994a, b ; 
 Wimberger  et al. , 1995 ). Thus, despite the fact that 
increases in myelin are temporally correlated with 
increases in diffusion anisotropy, structures other than 
the myelin sheath must significantly contribute to 

diffusion anisotropy ( LeBihan  et al. , 1993 ). This is 
important because the degree of diffusion anisotropy 
is not a quantitative measure or  “ stain ”  of myelin 
content ( Pierpaoli and Basser, 1996 ). The anatomical 
determinants of diffusion anisotropy will be discussed 
in great detail in Chapter 5.  

    IV.     CONCLUDING REMARKS 

 As water (or another spin-labeled molecule) under-
goes diffusion, it also encounters barriers, macromol-
ecules, sampling many different local environments. 
Collectively, the signal we measure in an MR experi-
ment contains contributions from water motion in 
these various microenvironments. The challenge in 
diffusion NMR and MRI is to try to infer features of 
the local tissue anatomy, composition, and microstruc-
ture from MR displacement measurements. One great 
advantage of MR is that it permits one to probe tis-
sue structure at different length scales (  Ö zarslan and 
Basser, 2008 )  –  i.e. levels of hierarchical architectural 
organization (  Ö zarslan  et al. , 2006 ). Specifically, while 
the mean-squared displacement of water is on the 
order of microns for typical MR experiments, these 
molecular motions are ensemble-averaged within a 
voxel, and then subsequently assembled into multi-
slice or 3D images of tissues and organs. Thus, this 
imaging modality permits us to study and elucidate 
complex structural features spanning length scales 
ranging from the macromolecular to the macroscopic  –  
without the use of exogenous contrast agents.  
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